China wholesaler 19mm 19-32 Woodon China Pin Bush Universal Coupling SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295

Product Description

Product     Name Cardan Shaft
Product     Model SWC-I75A-335+40
Main          Material 35CrMo or 45# Steel
Nominal  Torque 500  N.M
Normal      Length 335 mm
Length       Compensation 40 mm

Standard Or Nonstandard: Nonstandard
Shaft Hole: 19-32
Torque: >80N.M
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

China wholesaler 19mm 19-32 Woodon China Pin Bush Universal Coupling SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295

pin coupling

How Do Pin Couplings Compare to Other Types of Couplings in Terms of Performance?

Pin couplings offer certain advantages and disadvantages compared to other types of couplings, and their performance characteristics can vary depending on the specific application requirements. Below is a comparison of pin couplings with some commonly used couplings:

1. Gear Couplings:

  • Flexibility: Gear couplings are more rigid than pin couplings and may not offer the same level of misalignment capacity.
  • Torsional Stiffness: Gear couplings provide higher torsional stiffness, making them suitable for applications requiring precise torque transmission.
  • Shock Absorption: Gear couplings can handle higher shock loads due to their robust design and greater stiffness.
  • Maintenance: Gear couplings may require periodic lubrication and maintenance compared to maintenance-free pin couplings.
  • Applications: Gear couplings are commonly used in heavy-duty and high-torque applications where precise torque transmission is essential.

2. Flexible (Elastomeric) Couplings:

  • Flexibility: Elastomeric couplings offer higher misalignment capacity than pin couplings and can handle angular, parallel, and axial misalignment.
  • Shock Absorption: Elastomeric couplings provide excellent shock absorption, damping vibrations, and protecting connected equipment.
  • Torsional Stiffness: Elastomeric couplings have lower torsional stiffness compared to pin couplings, making them more forgiving in high shock load applications.
  • Installation: Elastomeric couplings are easy to install and require no lubrication, making them maintenance-free.
  • Applications: Elastomeric couplings are commonly used in pumps, compressors, and other machinery where vibration isolation is crucial.

3. Rigid Couplings:

  • Torsional Stiffness: Rigid couplings provide high torsional stiffness, ensuring accurate torque transmission.
  • Misalignment Capacity: Rigid couplings have little to no misalignment capacity and require precise shaft alignment.
  • Applications: Rigid couplings are used in applications where precise alignment is essential, such as shaft-to-shaft connections in high-precision systems.

Conclusion:

Pin couplings strike a balance between flexibility and torsional stiffness, making them suitable for applications with moderate misalignment and shock loads. They are often used in general industrial applications, conveyors, and light to medium-duty machinery.

When selecting a coupling for a specific application, it is crucial to consider factors such as misalignment requirements, shock and vibration loads, torsional stiffness, maintenance needs, and the level of precision required. Each coupling type has its strengths and weaknesses, and the appropriate choice will depend on the specific demands of the application.

pin coupling

How Does a Pin Coupling Handle Angular, Parallel, and Axial Misalignment?

A pin coupling is designed to handle different types of misalignment, including angular, parallel, and axial misalignment. The unique construction of pin couplings allows them to accommodate these misalignments without compromising the efficiency and performance of the connected equipment.

1. Angular Misalignment: Angular misalignment occurs when the axes of the driving and driven shafts are not parallel but intersect at an angle. Pin couplings can tolerate angular misalignment because of their flexible and floating pin design. The two coupling halves are connected by a series of pins, which can pivot and move within the pin holes. This flexibility allows the coupling to bend slightly, adjusting to the angle of misalignment between the shafts.

2. Parallel Misalignment: Parallel misalignment happens when the axes of the driving and driven shafts are parallel, but they are laterally displaced from each other. Pin couplings can handle parallel misalignment to some extent due to the floating nature of the pins. The pins can move laterally within the pin holes, allowing the coupling to adapt to the offset between the shafts.

3. Axial Misalignment: Axial misalignment occurs when there is a linear displacement along the axis of one shaft concerning the other. While pin couplings primarily focus on handling angular and parallel misalignment, they may offer limited axial misalignment capabilities. The floating pins provide a small degree of axial movement, but excessive axial misalignment is best avoided to prevent additional stresses on the coupling.

It is important to note that while pin couplings can accommodate some degree of misalignment, excessive misalignment should be avoided to prevent premature wear and potential failure of the coupling and connected equipment. Regular inspection and maintenance can help identify and address any misalignment issues, ensuring the optimal performance and longevity of the pin coupling in power transmission applications.

pin coupling

Limitations and Disadvantages of Using Pin Couplings

While pin couplings offer various advantages and are suitable for many applications, they also have some limitations and disadvantages to consider:

  • Misalignment Restrictions: Pin couplings can accommodate a certain degree of misalignment, but excessive misalignment can lead to increased wear and stress on the coupling components. They are not as effective at handling large angular or parallel misalignments compared to other flexible couplings like gear or elastomeric couplings.
  • Less Damping Capacity: Pin couplings have limited damping capacity, which means they may not effectively absorb and reduce vibrations in the system. In applications where vibration damping is critical, elastomeric or flexible couplings may be more suitable.
  • Noisy Operation: The rigid nature of pin couplings can lead to increased noise during operation, especially at high speeds or in applications with significant misalignment. This noise can be a concern in environments where noise levels need to be minimized.
  • Higher Maintenance: Compared to maintenance-free couplings like certain types of elastomeric couplings, pin couplings may require more frequent inspection and maintenance. The pins and other components may experience wear over time and need replacement.
  • Environmental Limitations: Some pin couplings may not be suitable for use in corrosive or high-temperature environments, depending on the materials used. Stainless steel or other corrosion-resistant materials can help mitigate this limitation.
  • Size and Weight: In certain applications, the size and weight of pin couplings may be larger and heavier compared to other types of couplings. This can be a consideration in applications where weight is a concern or space is limited.

Despite these limitations, pin couplings remain a popular choice for many applications where their advantages, such as simplicity, durability, and cost-effectiveness, outweigh their disadvantages. It is crucial to carefully assess the specific requirements of the application and consider factors like misalignment, vibration, maintenance needs, and environmental conditions when selecting a coupling type.

China wholesaler 19mm 19-32 Woodon China Pin Bush Universal Coupling SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295  China wholesaler 19mm 19-32 Woodon China Pin Bush Universal Coupling SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295
editor by CX 2023-11-16