China Grooved Coupling (flexible type) cast of coupling

Merchandise Description

 

Merchandise Name:   
Flexible coupling for connecting fireplace defense pipes and fittings.

Materials:
Ductile forged iron 

Normal: 
UL shown & FM approved
also wen can manufacture distinct size in accordance to client’s prerequisite.

Measurements offered: 

Nominal size Pipe O.D. Working force                   Dimensions  Bolt dimension
     ∅       L     H
mm in mm in PSI Mpa mm in mm in mm in mm
25 1 33.7 one.327 300 2.07 fifty five.six two.188 ninety eight three.858 44 1.732 M10*forty five
32 one 1/four 42.four 1.699 three hundred 2.07 66 2.598 107 4.213 forty four 1.732 M10*45
forty 1 1/2 48.3 1.9 300 two.07 seventy four 2.913 a hundred and fifteen four.527 forty four one.732 M10*45
fifty two sixty.3 2.372 300 2.07 eighty four three.307 124 4.882 44 1.732 M10*fifty five
sixty five two 1/two 73 2.875 300 two.07 98 3.858 138 5.433 45 one.772 M10*55
65 2 1/2 76.one 3 three hundred two.07 100 three.937 143 five.sixty three forty five one.772 M10*55
80 3    88.nine three.5 three hundred two.07 114 4.488 157 six.181 45 one.772 M10*55
one hundred 4    114.three four.5 three hundred 2.07 one hundred forty 5.512 187 seven.362 fifty 1.899 M10*sixty five
125 5    139.seven five.five three hundred 2.07 172 6.771 220 8.661 50 1.899 M12*70
125 5    141.three 5.563 300 two.07 172 six.771 220 8.661 50 1.899 M12*75
a hundred and fifty 6    165.one 6.five 300 2.07 197 7.756 252 9.921 fifty one two.008 M12*75
one hundred fifty 6    168.3 six.625 three hundred two.07 197 7.756 255 ten.039 fifty one 2.008 M12*seventy five
two hundred 8    219.one eight.625 three hundred two.07 254 10 330 12.992 sixty one 2.405 M16*100
250 ten 273 10.75 three hundred 2.07 317 12.48 397.eight 15.661 sixty two two.441 M20*a hundred and ten
three hundred 12 323.nine 12.751 three hundred 2.07 370 14.566 457 seventeen.992 60 two.362 M20*a hundred and twenty

We can manufacture different dimension according to your requirement.

About US:

US $0.85-15
/ Piece
|
100 Pieces

(Min. Order)

###

Connection: Grooved
Structure: Universal
Flexible or Rigid: Flexible
Material: Ductile Cast Iron
Standard: Standard
Certificate: UL Listed, FM Approved

###

Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Nominal size Pipe O.D. Working pressure                   Dimensions  Bolt size
     ∅       L     H
mm in mm in PSI Mpa mm in mm in mm in mm
25 1 33.7 1.327 300 2.07 55.6 2.188 98 3.858 44 1.732 M10*45
32 1 1/4 42.4 1.699 300 2.07 66 2.598 107 4.213 44 1.732 M10*45
40 1 1/2 48.3 1.9 300 2.07 74 2.913 115 4.527 44 1.732 M10*45
50 2 60.3 2.372 300 2.07 84 3.307 124 4.882 44 1.732 M10*55
65 2 1/2 73 2.875 300 2.07 98 3.858 138 5.433 45 1.772 M10*55
65 2 1/2 76.1 3 300 2.07 100 3.937 143 5.63 45 1.772 M10*55
80 3    88.9 3.5 300 2.07 114 4.488 157 6.181 45 1.772 M10*55
100 4    114.3 4.5 300 2.07 140 5.512 187 7.362 50 1.899 M10*65
125 5    139.7 5.5 300 2.07 172 6.771 220 8.661 50 1.899 M12*70
125 5    141.3 5.563 300 2.07 172 6.771 220 8.661 50 1.899 M12*75
150 6    165.1 6.5 300 2.07 197 7.756 252 9.921 51 2.008 M12*75
150 6    168.3 6.625 300 2.07 197 7.756 255 10.039 51 2.008 M12*75
200 8    219.1 8.625 300 2.07 254 10 330 12.992 61 2.405 M16*100
250 10 273 10.75 300 2.07 317 12.48 397.8 15.661 62 2.441 M20*110
300 12 323.9 12.751 300 2.07 370 14.566 457 17.992 60 2.362 M20*120
US $0.85-15
/ Piece
|
100 Pieces

(Min. Order)

###

Connection: Grooved
Structure: Universal
Flexible or Rigid: Flexible
Material: Ductile Cast Iron
Standard: Standard
Certificate: UL Listed, FM Approved

###

Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Nominal size Pipe O.D. Working pressure                   Dimensions  Bolt size
     ∅       L     H
mm in mm in PSI Mpa mm in mm in mm in mm
25 1 33.7 1.327 300 2.07 55.6 2.188 98 3.858 44 1.732 M10*45
32 1 1/4 42.4 1.699 300 2.07 66 2.598 107 4.213 44 1.732 M10*45
40 1 1/2 48.3 1.9 300 2.07 74 2.913 115 4.527 44 1.732 M10*45
50 2 60.3 2.372 300 2.07 84 3.307 124 4.882 44 1.732 M10*55
65 2 1/2 73 2.875 300 2.07 98 3.858 138 5.433 45 1.772 M10*55
65 2 1/2 76.1 3 300 2.07 100 3.937 143 5.63 45 1.772 M10*55
80 3    88.9 3.5 300 2.07 114 4.488 157 6.181 45 1.772 M10*55
100 4    114.3 4.5 300 2.07 140 5.512 187 7.362 50 1.899 M10*65
125 5    139.7 5.5 300 2.07 172 6.771 220 8.661 50 1.899 M12*70
125 5    141.3 5.563 300 2.07 172 6.771 220 8.661 50 1.899 M12*75
150 6    165.1 6.5 300 2.07 197 7.756 252 9.921 51 2.008 M12*75
150 6    168.3 6.625 300 2.07 197 7.756 255 10.039 51 2.008 M12*75
200 8    219.1 8.625 300 2.07 254 10 330 12.992 61 2.405 M16*100
250 10 273 10.75 300 2.07 317 12.48 397.8 15.661 62 2.441 M20*110
300 12 323.9 12.751 300 2.07 370 14.566 457 17.992 60 2.362 M20*120

Programming With Couplings

A coupling is a mechanical device that connects two shafts together and transmits power. Its purpose is to join rotating equipment and allows some degree of end-movement or misalignment. There are many different types of couplings. It’s important to choose the right one for your application.
gearbox

Mechanical connection between two shafts

There are many ways to achieve mechanical connection between two shafts, including the use of a coupling. One common type is the beam coupling, which is also known as a helical coupling. It is used for transmission of torque between two shafts. This type of connection accommodates axial, parallel and angular misalignments.
The hubs and shafts of a worm gear are connected together by a coupling. This mechanical connection allows one shaft to turn another without causing a mechanical failure. This type of coupling is made from sliding or rubbing parts to transfer torque. However, the coupling is not designed to withstand jerks, so it isn’t suitable for high-speed applications.
The use of a coupling is common in machinery and equipment. It helps transmit power from one drive shaft to the other, while adding mechanical flexibility. It is also useful for reducing the impact and vibration caused by misalignment. It also protects the drive shaft components from wear and tear.
A double-hook coupling can be used to provide a uniform angular velocity at the driven shaft. Another example is a double-jointed coupling. A double-jointed coupling can be used to connect shafts that are not directly intersecting. The double-jointed yoke can be used for the same purpose.
A shaft coupling is a device that maintains a strong mechanical connection between two shafts. It transfers motion from one shaft to another, at all loads and misalignments. Unlike a conventional linkage, a shaft coupling isn’t designed to allow relative motion between the two shafts. Couplings often serve several purposes in a machine, but their primary use is torque and power transmission.

Functions that control the flow of another function

One of the simplest programming constructs is a function that controls the flow of another function. A function can take an argument and return a different value, but it must be ready to return before it can pass that value to another function. To do this, you can use the goto statement and the if statement. Another way to control flow is to use a conditional statement.
gearbox

Criteria for selecting a coupling

There are several important factors to consider when choosing the right coupling. One of the most important factors is coupling stiffness, which depends on the material used and the shape. The stiffness of a coupling determines its ability to resist elastic deformation. A stiff coupling is desirable for certain types of applications, but it’s undesirable for others. Stiffness can reduce the performance of a system if there’s too much inertia. To avoid this, ensure that the coupling you choose is within the recommended limits.
The size of a coupling is also important. Different coupling types can accommodate different shaft sizes and shapes. Some couplings have special features, such as braking and shear pin protection. When choosing a coupling, you should also consider the type of driven equipment. If you need to connect a high-torque motor, for example, you’ll want to choose a gear coupling. Likewise, a high-speed machine may require a disc coupling.
Another factor to consider when selecting a coupling is the torque rating. Despite its importance, it’s often underestimated. The torque rating is defined as the torque of the coupling divided by its OD. In some cases, torque may fluctuate during a cycle, requiring a coupling with a higher torque rating.
Torsionally flexible couplings are also important to consider. Their design should be able to withstand the torque required during operation, as well as the required speed. The coupling should also have a high degree of torsional stiffness, as well as damping. Furthermore, a damping coupling can reduce the energy wasted through vibration.
The sizing of a coupling is also determined by the torque. Many engineers use torque to select the correct coupling size, but they also take into consideration torsional flexibility and torsional stiffness. For example, a shaft may be able to handle large torque without damaging the coupling, while a disk may be unable to handle large amounts of torque.
Besides torque, another important consideration in coupling selection is the cost. While a coupling may be cheaper, it may be less reliable or easier to maintain. Couplings that are difficult to service may not last as long. They may also require frequent maintenance. If that’s the case, consider purchasing a coupling with a low service factor.
There are many different types of couplings. Some require additional lubrication throughout their lifetime, while others are 100% lubrication-free. An example of a 100% lubrication-free coupling is the RBI flexible coupling from CZPT. This type of coupling can significantly reduce your total cost of ownership.
In addition to the above-mentioned benefits, elastomeric couplings are low-cost and need little maintenance. While they are often cheaper than metallic couplings, they also have excellent shock absorption and vibration dampening properties. However, they are susceptible to high temperatures. Also, they are difficult to balance as an assembly, and have limited overload torque capacity.
China Grooved Coupling (flexible type)     cast of couplingChina Grooved Coupling (flexible type)     cast of coupling
editor by czh 2022-11-28